What factors might help us get the most distance? A Graphical Look at the Data So Far

Distance (m) vs. Launch Angle (°)

Distance (m)

Launch Angle (°)

Distance (m) vs. Cable Length (cm)

Distance (m) vs. Payload Mass (g)

Maximum Speed (m/s)

A critical question: How much error is there in our data?

Levels Group

Levels Group

Levels Group

Let's Compare:

Test Group	Bottle	Cable Length (cm)	Launch Angle (°)	Payload Shape	Payload Mass (g)
2	Small	70	50	With fins	81
13	XSmall	70	25	cone	29

- \succ Only Cable Length is the same.
- Bottle, Angle, Shape, and Mass are all different.
 Is one of these most important for distance?
 Or is it a combination?

Breakout Discussion / Homework:

- Can you find more clues (evidence) in the data to help decide if bottle, angle, or mass are important?
- Which combination of levels would you want run again to get more data?

Discuss these in the time available now.
 Be prepared to give a response tomorrow.

A good response would sound like:

"I notice in the data that...

This makes me think maybe...

I think we should test this by..."